Skip to contents

mtable produces a table of estimates for several models.

Usage

mtable(...,coef.style=getOption("coef.style"),
    summary.stats=TRUE,
    signif.symbols=getOption("signif.symbols"),
    factor.style=getOption("factor.style"),
    show.baselevel=getOption("show.baselevel"),
    baselevel.sep=getOption("baselevel.sep"),
    getSummary=eval.parent(quote(getSummary)),
    float.style=getOption("float.style"),
    digits=min(3,getOption("digits")),
    sdigits=digits,
    show.eqnames=getOption("mtable.show.eqnames",NA),
    gs.options=NULL,
    controls=NULL,
    collapse.controls=FALSE,
    control.var.indicator=getOption("control.var.indicator",c("Yes","No"))
  )
# S3 method for class 'memisc_mtable'
relabel(x, ..., gsub = FALSE, fixed = !gsub, warn = FALSE)

# S3 method for class 'memisc_mtable'
format(x,target=c("print","LaTeX","HTML","delim"),
    ...
    )

# S3 method for class 'memisc_mtable'
print(x,
    center.at=getOption("OutDec"),
    topsep="=",bottomsep="=",sectionsep="-",...)

write.mtable(object,file="",
             format=c("delim","LaTeX","HTML"),...)

# S3 method for class 'memisc_mtable'
toLatex(object,...)

Arguments

...

as argument to mtable: several model objects, e.g. of class lm; as argument to print.memisc_mtable, toLatex.memisc_mtable, write.memisc_mtable: further arguments passed to format.memisc_mtable; as argument to format.memisc_mtable: further arguments passed to format.default; as argument to relabel.memisc_mtable: further arguments passed to dimrename.

coef.style

a character string which specifies the style of coefficient values, whether standard errors, Wald/t-statistics, or significance levels are reported, etc. See coef.style.

summary.stats

if FALSE, no summary statistics are repored. If TRUE then for each object in ... either all summary statistics are reported, or those specified by the option "summary.stats.<cls>", where <cls> is the class of the respective object.

This argument may also contain a character vector with the names of the summary statistics to report, or a list of character vectors with names of summary statistics for each object passed as argument in ....

signif.symbols

a named numeric vector to specify the "significance levels" and corresponding symbols. The numeric elements define the significance levels, the attached names define the associated symbols.

factor.style

a character string that specifies the style in which factor contrasts are labled. See factor.style.

show.baselevel

logical; determines whether base levels of factors are indicated for dummy coefficients

baselevel.sep

character that is used to separate the base level from the level that a dummy variable represents

getSummary

a function that computes model-related statistics that appear in the table. See getSummary.

float.style

default format for floating point numbers if no format is specified by coef.style

.

digits

number of significant digits if not specified by the template returned from getCoefTemplate getSummaryTemplate

sdigits

integer; number of digits after decimal dot for summary statistics.

show.eqnames

logical; if TRUE, left-hand sides of equations are (always) shown in the table header; if FALSE, left-hand sides of equations are not shown; if NA, left-hand sides of equations are shown only if left-hand sides differ among models or one of the models has multiple equations.

gs.options

an optional list of arguments passed on to getSummary

controls

an optional formula or character vector that designates "control variables" for which no coefficients are reported, but only whether they are present in the model.

collapse.controls

a logical values; should the report about inclusion of control variables collapsed to a single value? If yes, models should either contain none or all of the control variables.

control.var.indicator

a character vector with to elements; the first element being used to indicate the presence of a control variable or all control variables (if collapse.controls=TRUE), the second element being used otherwise. By default these elements are "Yes" and "No".

x, object

an object of class mtable

gsub, warn, fixed

logical values, see relabel

target

a character string which indicates the target format. Currenlty the targets "print" (see mtable_format_print), "LaTeX" (see mtable_format_latex), "HTML" (see mtable_format_html), and "delim" (see mtable_format_delim) are supported.

center.at

a character string on which resulting values are centered. Typically equal to ".". This is the default when forLaTeX==TRUE. If NULL, reported values are not centered.

topsep

a character string that is recycled to a top rule.

bottomsep

a character string that is recycled to a bottom rule.

sectionsep

a character string that is recycled to seperate coefficients from summary statistics.

file

name of the file where to write to; defaults to console output.

format

character string that specifies the desired format.

Details

mtable constructs a table of estimates for regression-type models. format.memisc_mtable formats suitable for use with output or conversion functions such as print.memisc_mtable, toLatex.memisc_mtable, or write.memisc_mtable.

Value

A call to mtable results in an object of class "mtable" with the following components:

coefficients

a list that contains the model coefficients,

summaries

a matrix that contains the model summaries,

calls

a list of calls that created the model estimates being summarised.

Examples

#### Basic workflow

lm0 <- lm(sr ~ pop15 + pop75,              data = LifeCycleSavings)
lm1 <- lm(sr ~                 dpi + ddpi, data = LifeCycleSavings)
lm2 <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)

options(summary.stats.lm=c("R-squared","N"))
mtable("Model 1"=lm0,"Model 2"=lm1,"Model 3"=lm2)
#> 
#> Calls:
#> Model 1: lm(formula = sr ~ pop15 + pop75, data = LifeCycleSavings)
#> Model 2: lm(formula = sr ~ dpi + ddpi, data = LifeCycleSavings)
#> Model 3: lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
#> 
#> ================================================
#>                 Model 1    Model 2    Model 3   
#> ------------------------------------------------
#>   (Intercept)  30.628***   6.360***  28.566***  
#>                (7.409)    (1.252)    (7.355)    
#>   pop15        -0.471**              -0.461**   
#>                (0.147)               (0.145)    
#>   pop75        -1.934                -1.691     
#>                (1.041)               (1.084)    
#>   dpi                      0.001     -0.000     
#>                           (0.001)    (0.001)    
#>   ddpi                     0.529*     0.410*    
#>                           (0.210)    (0.196)    
#> ------------------------------------------------
#>   R-squared     0.262      0.162      0.338     
#>   N            50         50         50         
#> ================================================
#>   Significance: *** = p < 0.001;   
#>                 ** = p < 0.01; * = p < 0.05  

options(summary.stats.lm=c("sigma","R-squared","N"))
mtable("Model 1"=lm0,"Model 2"=lm1,"Model 3"=lm2)
#> 
#> Calls:
#> Model 1: lm(formula = sr ~ pop15 + pop75, data = LifeCycleSavings)
#> Model 2: lm(formula = sr ~ dpi + ddpi, data = LifeCycleSavings)
#> Model 3: lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
#> 
#> ================================================
#>                 Model 1    Model 2    Model 3   
#> ------------------------------------------------
#>   (Intercept)  30.628***   6.360***  28.566***  
#>                (7.409)    (1.252)    (7.355)    
#>   pop15        -0.471**              -0.461**   
#>                (0.147)               (0.145)    
#>   pop75        -1.934                -1.691     
#>                (1.041)               (1.084)    
#>   dpi                      0.001     -0.000     
#>                           (0.001)    (0.001)    
#>   ddpi                     0.529*     0.410*    
#>                           (0.210)    (0.196)    
#> ------------------------------------------------
#>   R-squared     0.262      0.162      0.338     
#>   sigma         3.931      4.189      3.803     
#>   N            50         50         50         
#> ================================================
#>   Significance: *** = p < 0.001;   
#>                 ** = p < 0.01; * = p < 0.05  

options(summary.stats.lm=NULL)

mtable123 <- mtable("Model 1"=lm0,"Model 2"=lm1,"Model 3"=lm2,
    summary.stats=c("sigma","R-squared","F","p","N"))

(mtable123 <- relabel(mtable123,
  "(Intercept)" = "Constant",
          pop15 = "Percentage of population under 15",
          pop75 = "Percentage of population over 75",
            dpi = "Real per-capita disposable income",
           ddpi = "Growth rate of real per-capita disp. income"
  ))
#> 
#> Calls:
#> Model 1: lm(formula = sr ~ pop15 + pop75, data = LifeCycleSavings)
#> Model 2: lm(formula = sr ~ dpi + ddpi, data = LifeCycleSavings)
#> Model 3: lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
#> 
#> ================================================================================
#>                                                 Model 1    Model 2    Model 3   
#> --------------------------------------------------------------------------------
#>   Constant                                     30.628***   6.360***  28.566***  
#>                                                (7.409)    (1.252)    (7.355)    
#>   Percentage of population under 15            -0.471**              -0.461**   
#>                                                (0.147)               (0.145)    
#>   Percentage of population over 75             -1.934                -1.691     
#>                                                (1.041)               (1.084)    
#>   Real per-capita disposable income                        0.001     -0.000     
#>                                                           (0.001)    (0.001)    
#>   Growth rate of real per-capita disp. income              0.529*     0.410*    
#>                                                           (0.210)    (0.196)    
#> --------------------------------------------------------------------------------
#>   R-squared                                     0.262      0.162      0.338     
#>   sigma                                         3.931      4.189      3.803     
#>   F                                             8.332      4.528      5.756     
#>   p                                             0.001      0.016      0.001     
#>   N                                            50         50         50         
#> ================================================================================
#>   Significance: *** = p < 0.001; ** = p < 0.01; * = p < 0.05  

# This produces output in tab-delimited format:
write.mtable(mtable123)
#> 	Model 1	Model 2	Model 3
#> Constant	30.628***	6.360***	28.566***
#> 	(7.409)	(1.252)	(7.355)
#> Percentage of population under 15	-0.471**		-0.461**
#> 	(0.147)		(0.145)
#> Percentage of population over 75	-1.934		-1.691
#> 	(1.041)		(1.084)
#> Real per-capita disposable income		0.001	-0.000
#> 		(0.001)	(0.001)
#> Growth rate of real per-capita disp. income		0.529*	0.410*
#> 		(0.210)	(0.196)
#> R-squared	0.262	0.162	0.338
#> sigma	3.931	4.189	3.803
#> F	8.332	4.528	5.756
#> p	0.001	0.016	0.001
#> N	50	50	50

if (FALSE) { # \dontrun{
# This produces output in tab-delimited format:
file123 <- "mtable123.txt"
write.mtable(mtable123,file=file123)
file.show(file123)
# The contents of this file can be pasted into Word
# and converted into a Word table.
} # }
if (FALSE) texfile123 <- "mtable123.tex"
write.mtable(mtable123,format="LaTeX",file=texfile123)
#> Error: object 'texfile123' not found
file.show(texfile123) # \dontrun{}
#> Error: object 'texfile123' not found

#### Examples with UC Berkeley data

berkeley <- Aggregate(Table(Admit,Freq)~.,data=UCBAdmissions)

berk0 <- glm(cbind(Admitted,Rejected)~1,data=berkeley,family="binomial")
berk1 <- glm(cbind(Admitted,Rejected)~Gender,data=berkeley,family="binomial")
berk2 <- glm(cbind(Admitted,Rejected)~Gender+Dept,data=berkeley,family="binomial")

mtable(berk0,summary.stats=c("Deviance","N"))
#> 
#> Calls:
#> berk0: glm(formula = cbind(Admitted, Rejected) ~ 1, family = "binomial", 
#>     data = berkeley)
#> 
#> ============================
#>   (Intercept)    -0.457***  
#>                  (0.031)    
#> ----------------------------
#>   Deviance      877.056     
#>   N            4526         
#> ============================
#>   Significance:   
#>                 *** = p < 0.001;   
#>                 ** = p < 0.01;   
#>                 * = p < 0.05  
mtable(berk1,summary.stats=c("Deviance","N"))
#> 
#> Calls:
#> berk1: glm(formula = cbind(Admitted, Rejected) ~ Gender, family = "binomial", 
#>     data = berkeley)
#> 
#> ====================================
#>   (Intercept)            -0.220***  
#>                          (0.039)    
#>   Gender: Female/Male    -0.610***  
#>                          (0.064)    
#> ------------------------------------
#>   Deviance              783.607     
#>   N                    4526         
#> ====================================
#>   Significance: *** = p < 0.001;   
#>                 ** = p < 0.01;   
#>                 * = p < 0.05  

mtable(berk0,berk1,berk2,summary.stats=c("Deviance","N"))
#> 
#> Calls:
#> berk0: glm(formula = cbind(Admitted, Rejected) ~ 1, family = "binomial", 
#>     data = berkeley)
#> berk1: glm(formula = cbind(Admitted, Rejected) ~ Gender, family = "binomial", 
#>     data = berkeley)
#> berk2: glm(formula = cbind(Admitted, Rejected) ~ Gender + Dept, family = "binomial", 
#>     data = berkeley)
#> 
#> ==============================================================
#>                           berk0        berk1        berk2     
#> --------------------------------------------------------------
#>   (Intercept)            -0.457***    -0.220***     0.582***  
#>                          (0.031)      (0.039)      (0.069)    
#>   Gender: Female/Male                 -0.610***     0.100     
#>                                       (0.064)      (0.081)    
#>   Dept: B/A                                        -0.043     
#>                                                    (0.110)    
#>   Dept: C/A                                        -1.263***  
#>                                                    (0.107)    
#>   Dept: D/A                                        -1.295***  
#>                                                    (0.106)    
#>   Dept: E/A                                        -1.739***  
#>                                                    (0.126)    
#>   Dept: F/A                                        -3.306***  
#>                                                    (0.170)    
#> --------------------------------------------------------------
#>   Deviance              877.056      783.607       20.204     
#>   N                    4526         4526         4526         
#> ==============================================================
#>   Significance: *** = p < 0.001; ** = p < 0.01; * = p < 0.05  

mtable(berk0,berk1,berk2,
          coef.style="horizontal",
          summary.stats=c("Deviance","AIC","N"))
#> 
#> Calls:
#> berk0: glm(formula = cbind(Admitted, Rejected) ~ 1, family = "binomial", 
#>     data = berkeley)
#> berk1: glm(formula = cbind(Admitted, Rejected) ~ Gender, family = "binomial", 
#>     data = berkeley)
#> berk2: glm(formula = cbind(Admitted, Rejected) ~ Gender + Dept, family = "binomial", 
#>     data = berkeley)
#> 
#> ======================================================================================
#>                               berk0                berk1                berk2         
#> --------------------------------------------------------------------------------------
#>   (Intercept)            -0.457*** (0.031)    -0.220*** (0.039)     0.582*** (0.069)  
#>   Gender: Female/Male                         -0.610*** (0.064)     0.100    (0.081)  
#>   Dept: B/A                                                        -0.043    (0.110)  
#>   Dept: C/A                                                        -1.263*** (0.107)  
#>   Dept: D/A                                                        -1.295*** (0.106)  
#>   Dept: E/A                                                        -1.739*** (0.126)  
#>   Dept: F/A                                                        -3.306*** (0.170)  
#> --------------------------------------------------------------------------------------
#>   Deviance              877.056              783.607               20.204             
#>   AIC                   947.996              856.547              103.144             
#>   N                    4526                 4526                 4526                 
#> ======================================================================================
#>   Significance: *** = p < 0.001; ** = p < 0.01; * = p < 0.05  
mtable(berk0,berk1,berk2,
          coef.style="stat",
          summary.stats=c("Deviance","AIC","N"))
#> 
#> Calls:
#> berk0: glm(formula = cbind(Admitted, Rejected) ~ 1, family = "binomial", 
#>     data = berkeley)
#> berk1: glm(formula = cbind(Admitted, Rejected) ~ Gender, family = "binomial", 
#>     data = berkeley)
#> berk2: glm(formula = cbind(Admitted, Rejected) ~ Gender + Dept, family = "binomial", 
#>     data = berkeley)
#> 
#> ==============================================================
#>                           berk0        berk1        berk2     
#> --------------------------------------------------------------
#>   (Intercept)            -0.457***    -0.220***     0.582***  
#>                        (-14.972)     (-5.675)      (8.436)    
#>   Gender: Female/Male                 -0.610***     0.100     
#>                                      (-9.553)      (1.235)    
#>   Dept: B/A                                        -0.043     
#>                                                   (-0.395)    
#>   Dept: C/A                                        -1.263***  
#>                                                  (-11.841)    
#>   Dept: D/A                                        -1.295***  
#>                                                  (-12.234)    
#>   Dept: E/A                                        -1.739***  
#>                                                  (-13.792)    
#>   Dept: F/A                                        -3.306***  
#>                                                  (-19.452)    
#> --------------------------------------------------------------
#>   Deviance              877.056      783.607       20.204     
#>   AIC                   947.996      856.547      103.144     
#>   N                    4526         4526         4526         
#> ==============================================================
#>   Significance: *** = p < 0.001; ** = p < 0.01; * = p < 0.05  
mtable(berk0,berk1,berk2,
          coef.style="ci",
          summary.stats=c("Deviance","AIC","N"))
#> 
#> Calls:
#> berk0: glm(formula = cbind(Admitted, Rejected) ~ 1, family = "binomial", 
#>     data = berkeley)
#> berk1: glm(formula = cbind(Admitted, Rejected) ~ Gender, family = "binomial", 
#>     data = berkeley)
#> berk2: glm(formula = cbind(Admitted, Rejected) ~ Gender + Dept, family = "binomial", 
#>     data = berkeley)
#> 
#> ========================================================
#>                          berk0      berk1      berk2    
#> --------------------------------------------------------
#>   (Intercept)            -0.457     -0.220      0.582   
#>                         [-0.517    [-0.296     [0.447   
#>                          -0.397]    -0.144]     0.717]  
#>   Gender: Female/Male               -0.610      0.100   
#>                                    [-0.736    [-0.059   
#>                                     -0.485]     0.258]  
#>   Dept: B/A                                    -0.043   
#>                                               [-0.259   
#>                                                 0.172]  
#>   Dept: C/A                                    -1.263   
#>                                               [-1.472   
#>                                                -1.054]  
#>   Dept: D/A                                    -1.295   
#>                                               [-1.502   
#>                                                -1.087]  
#>   Dept: E/A                                    -1.739   
#>                                               [-1.986   
#>                                                -1.492]  
#>   Dept: F/A                                    -3.306   
#>                                               [-3.640   
#>                                                -2.973]  
#> --------------------------------------------------------
#>   Deviance              877.056    783.607     20.204   
#>   AIC                   947.996    856.547    103.144   
#>   N                    4526       4526       4526       
#> ========================================================
mtable(berk0,berk1,berk2,
          coef.style="ci.se",
          summary.stats=c("Deviance","AIC","N"))
#> 
#> Calls:
#> berk0: glm(formula = cbind(Admitted, Rejected) ~ 1, family = "binomial", 
#>     data = berkeley)
#> berk1: glm(formula = cbind(Admitted, Rejected) ~ Gender, family = "binomial", 
#>     data = berkeley)
#> berk2: glm(formula = cbind(Admitted, Rejected) ~ Gender + Dept, family = "binomial", 
#>     data = berkeley)
#> 
#> ========================================================
#>                          berk0      berk1      berk2    
#> --------------------------------------------------------
#>   (Intercept)            -0.457     -0.220      0.582   
#>                          (0.031)    (0.039)    (0.069)  
#>                         [-0.517    [-0.296     [0.447   
#>                          -0.397]    -0.144]     0.717]  
#>   Gender: Female/Male               -0.610      0.100   
#>                                     (0.064)    (0.081)  
#>                                    [-0.736    [-0.059   
#>                                     -0.485]     0.258]  
#>   Dept: B/A                                    -0.043   
#>                                                (0.110)  
#>                                               [-0.259   
#>                                                 0.172]  
#>   Dept: C/A                                    -1.263   
#>                                                (0.107)  
#>                                               [-1.472   
#>                                                -1.054]  
#>   Dept: D/A                                    -1.295   
#>                                                (0.106)  
#>                                               [-1.502   
#>                                                -1.087]  
#>   Dept: E/A                                    -1.739   
#>                                                (0.126)  
#>                                               [-1.986   
#>                                                -1.492]  
#>   Dept: F/A                                    -3.306   
#>                                                (0.170)  
#>                                               [-3.640   
#>                                                -2.973]  
#> --------------------------------------------------------
#>   Deviance              877.056    783.607     20.204   
#>   AIC                   947.996    856.547    103.144   
#>   N                    4526       4526       4526       
#> ========================================================
mtable(berk0,berk1,berk2,
          coef.style="ci.se.horizontal",
          summary.stats=c("Deviance","AIC","N"))
#> 
#> Calls:
#> berk0: glm(formula = cbind(Admitted, Rejected) ~ 1, family = "binomial", 
#>     data = berkeley)
#> berk1: glm(formula = cbind(Admitted, Rejected) ~ Gender, family = "binomial", 
#>     data = berkeley)
#> berk2: glm(formula = cbind(Admitted, Rejected) ~ Gender + Dept, family = "binomial", 
#>     data = berkeley)
#> 
#> =============================================================================
#>                             berk0             berk1             berk2        
#> -----------------------------------------------------------------------------
#>   (Intercept)            -0.457 (0.031)    -0.220 (0.039)     0.582 (0.069)  
#>                         [-0.517 -0.397]   [-0.296 -0.144]    [0.447  0.717]  
#>   Gender: Female/Male                      -0.610 (0.064)     0.100 (0.081)  
#>                                           [-0.736 -0.485]   [-0.059  0.258]  
#>   Dept: B/A                                                  -0.043 (0.110)  
#>                                                             [-0.259  0.172]  
#>   Dept: C/A                                                  -1.263 (0.107)  
#>                                                             [-1.472 -1.054]  
#>   Dept: D/A                                                  -1.295 (0.106)  
#>                                                             [-1.502 -1.087]  
#>   Dept: E/A                                                  -1.739 (0.126)  
#>                                                             [-1.986 -1.492]  
#>   Dept: F/A                                                  -3.306 (0.170)  
#>                                                             [-3.640 -2.973]  
#> -----------------------------------------------------------------------------
#>   Deviance              877.056           783.607            20.204          
#>   AIC                   947.996           856.547           103.144          
#>   N                    4526              4526              4526              
#> =============================================================================
mtable(berk0,berk1,berk2,
          coef.style="ci.p.horizontal",
          summary.stats=c("Deviance","AIC","N"))
#> 
#> Calls:
#> berk0: glm(formula = cbind(Admitted, Rejected) ~ 1, family = "binomial", 
#>     data = berkeley)
#> berk1: glm(formula = cbind(Admitted, Rejected) ~ Gender, family = "binomial", 
#>     data = berkeley)
#> berk2: glm(formula = cbind(Admitted, Rejected) ~ Gender + Dept, family = "binomial", 
#>     data = berkeley)
#> 
#> =============================================================================
#>                             berk0             berk1             berk2        
#> -----------------------------------------------------------------------------
#>   (Intercept)            -0.457 (0.000)    -0.220 (0.000)     0.582 (0.000)  
#>                         [-0.517 -0.397]   [-0.296 -0.144]    [0.447  0.717]  
#>   Gender: Female/Male                      -0.610 (0.000)     0.100 (0.217)  
#>                                           [-0.736 -0.485]   [-0.059  0.258]  
#>   Dept: B/A                                                  -0.043 (0.693)  
#>                                                             [-0.259  0.172]  
#>   Dept: C/A                                                  -1.263 (0.000)  
#>                                                             [-1.472 -1.054]  
#>   Dept: D/A                                                  -1.295 (0.000)  
#>                                                             [-1.502 -1.087]  
#>   Dept: E/A                                                  -1.739 (0.000)  
#>                                                             [-1.986 -1.492]  
#>   Dept: F/A                                                  -3.306 (0.000)  
#>                                                             [-3.640 -2.973]  
#> -----------------------------------------------------------------------------
#>   Deviance              877.056           783.607            20.204          
#>   AIC                   947.996           856.547           103.144          
#>   N                    4526              4526              4526              
#> =============================================================================
#>   Significance: *** = p < 0.001; ** = p < 0.01; * = p < 0.05  
mtable(berk0,berk1,berk2,
          coef.style="ci.horizontal",
          summary.stats=c("Deviance","AIC","N"))
#> 
#> Calls:
#> berk0: glm(formula = cbind(Admitted, Rejected) ~ 1, family = "binomial", 
#>     data = berkeley)
#> berk1: glm(formula = cbind(Admitted, Rejected) ~ Gender, family = "binomial", 
#>     data = berkeley)
#> berk2: glm(formula = cbind(Admitted, Rejected) ~ Gender + Dept, family = "binomial", 
#>     data = berkeley)
#> 
#> =====================================================================================================
#>                                 berk0                     berk1                     berk2            
#> -----------------------------------------------------------------------------------------------------
#>   (Intercept)            -0.457 [-0.517 -0.397]    -0.220 [-0.296 -0.144]     0.582  [0.447  0.717]  
#>   Gender: Female/Male                              -0.610 [-0.736 -0.485]     0.100 [-0.059  0.258]  
#>   Dept: B/A                                                                  -0.043 [-0.259  0.172]  
#>   Dept: C/A                                                                  -1.263 [-1.472 -1.054]  
#>   Dept: D/A                                                                  -1.295 [-1.502 -1.087]  
#>   Dept: E/A                                                                  -1.739 [-1.986 -1.492]  
#>   Dept: F/A                                                                  -3.306 [-3.640 -2.973]  
#> -----------------------------------------------------------------------------------------------------
#>   Deviance              877.056                   783.607                    20.204                  
#>   AIC                   947.996                   856.547                   103.144                  
#>   N                    4526                      4526                      4526                      
#> =====================================================================================================
mtable(berk0,berk1,berk2,
          coef.style="all",
          summary.stats=c("Deviance","AIC","N"))
#> 
#> Calls:
#> berk0: glm(formula = cbind(Admitted, Rejected) ~ 1, family = "binomial", 
#>     data = berkeley)
#> berk1: glm(formula = cbind(Admitted, Rejected) ~ Gender, family = "binomial", 
#>     data = berkeley)
#> berk2: glm(formula = cbind(Admitted, Rejected) ~ Gender + Dept, family = "binomial", 
#>     data = berkeley)
#> 
#> ==============================================================
#>                           berk0        berk1        berk2     
#> --------------------------------------------------------------
#>   (Intercept)            -0.457***    -0.220***     0.582***  
#>                          (0.031)      (0.039)      (0.069)    
#>                        (-14.972)     (-5.675)      (8.436)    
#>                          (0.000)      (0.000)      (0.000)    
#>   Gender: Female/Male                 -0.610***     0.100     
#>                                       (0.064)      (0.081)    
#>                                      (-9.553)      (1.235)    
#>                                       (0.000)      (0.217)    
#>   Dept: B/A                                        -0.043     
#>                                                    (0.110)    
#>                                                   (-0.395)    
#>                                                    (0.693)    
#>   Dept: C/A                                        -1.263***  
#>                                                    (0.107)    
#>                                                  (-11.841)    
#>                                                    (0.000)    
#>   Dept: D/A                                        -1.295***  
#>                                                    (0.106)    
#>                                                  (-12.234)    
#>                                                    (0.000)    
#>   Dept: E/A                                        -1.739***  
#>                                                    (0.126)    
#>                                                  (-13.792)    
#>                                                    (0.000)    
#>   Dept: F/A                                        -3.306***  
#>                                                    (0.170)    
#>                                                  (-19.452)    
#>                                                    (0.000)    
#> --------------------------------------------------------------
#>   Deviance              877.056      783.607       20.204     
#>   AIC                   947.996      856.547      103.144     
#>   N                    4526         4526         4526         
#> ==============================================================
#>   Significance: *** = p < 0.001; ** = p < 0.01; * = p < 0.05  
mtable(berk0,berk1,berk2,
          coef.style="all.nostar",
          summary.stats=c("Deviance","AIC","N"))
#> 
#> Calls:
#> berk0: glm(formula = cbind(Admitted, Rejected) ~ 1, family = "binomial", 
#>     data = berkeley)
#> berk1: glm(formula = cbind(Admitted, Rejected) ~ Gender, family = "binomial", 
#>     data = berkeley)
#> berk2: glm(formula = cbind(Admitted, Rejected) ~ Gender + Dept, family = "binomial", 
#>     data = berkeley)
#> 
#> ========================================================
#>                          berk0      berk1      berk2    
#> --------------------------------------------------------
#>   (Intercept)            -0.457     -0.220      0.582   
#>                          (0.031)    (0.039)    (0.069)  
#>                        (-14.972)   (-5.675)    (8.436)  
#>                          (0.000)    (0.000)    (0.000)  
#>   Gender: Female/Male               -0.610      0.100   
#>                                     (0.064)    (0.081)  
#>                                    (-9.553)    (1.235)  
#>                                     (0.000)    (0.217)  
#>   Dept: B/A                                    -0.043   
#>                                                (0.110)  
#>                                               (-0.395)  
#>                                                (0.693)  
#>   Dept: C/A                                    -1.263   
#>                                                (0.107)  
#>                                              (-11.841)  
#>                                                (0.000)  
#>   Dept: D/A                                    -1.295   
#>                                                (0.106)  
#>                                              (-12.234)  
#>                                                (0.000)  
#>   Dept: E/A                                    -1.739   
#>                                                (0.126)  
#>                                              (-13.792)  
#>                                                (0.000)  
#>   Dept: F/A                                    -3.306   
#>                                                (0.170)  
#>                                              (-19.452)  
#>                                                (0.000)  
#> --------------------------------------------------------
#>   Deviance              877.056    783.607     20.204   
#>   AIC                   947.996    856.547    103.144   
#>   N                    4526       4526       4526       
#> ========================================================
#>   Significance: *** = p < 0.001; ** = p < 0.01;   
#>                 * = p < 0.05  

mtable(by(berkeley,berkeley$Dept,
  function(x)glm(cbind(Admitted,Rejected)~Gender,
        data=x,family="binomial")),
      summary.stats=c("Likelihood-ratio","N"))
#> 
#> Calls:
#> A: glm(formula = cbind(Admitted, Rejected) ~ Gender, family = "binomial", 
#>     data = x)
#> B: glm(formula = cbind(Admitted, Rejected) ~ Gender, family = "binomial", 
#>     data = x)
#> C: glm(formula = cbind(Admitted, Rejected) ~ Gender, family = "binomial", 
#>     data = x)
#> D: glm(formula = cbind(Admitted, Rejected) ~ Gender, family = "binomial", 
#>     data = x)
#> E: glm(formula = cbind(Admitted, Rejected) ~ Gender, family = "binomial", 
#>     data = x)
#> F: glm(formula = cbind(Admitted, Rejected) ~ Gender, family = "binomial", 
#>     data = x)
#> 
#> ===============================================================================================
#>                            A           B           C           D           E           F       
#> -----------------------------------------------------------------------------------------------
#>   (Intercept)            0.492***    0.534***   -0.536***   -0.704***   -0.957***   -2.770***  
#>                         (0.072)     (0.088)     (0.115)     (0.104)     (0.162)     (0.220)    
#>   Gender: Female/Male    1.052***    0.220      -0.125       0.082      -0.200       0.189     
#>                         (0.263)     (0.438)     (0.144)     (0.150)     (0.200)     (0.305)    
#> -----------------------------------------------------------------------------------------------
#>   Likelihood-ratio      19.054       0.259       0.751       0.298       0.990       0.384     
#>   N                    933         585         918         792         584         714         
#> ===============================================================================================
#>   Significance: *** = p < 0.001; ** = p < 0.01; * = p < 0.05  


mtable(By(~Gender,
  glm(cbind(Admitted,Rejected)~Dept,
        family="binomial"),
        data=berkeley),
      summary.stats=c("Likelihood-ratio","N"))
#> 
#> Calls:
#> Male: glm(formula = cbind(Admitted, Rejected) ~ Dept, family = "binomial")
#> Female: glm(formula = cbind(Admitted, Rejected) ~ Dept, family = "binomial")
#> 
#> ==============================================
#>                        Male        Female     
#> ----------------------------------------------
#>   (Intercept)          0.492***     1.544***  
#>                       (0.072)      (0.253)    
#>   Dept: B/A            0.042       -0.790     
#>                       (0.113)      (0.498)    
#>   Dept: C/A           -1.028***    -2.205***  
#>                       (0.135)      (0.267)    
#>   Dept: D/A           -1.196***    -2.166***  
#>                       (0.126)      (0.275)    
#>   Dept: E/A           -1.449***    -2.701***  
#>                       (0.177)      (0.279)    
#>   Dept: F/A           -3.262***    -4.125***  
#>                       (0.231)      (0.330)    
#> ----------------------------------------------
#>   Likelihood-ratio   514.756      268.851     
#>   N                 2691         1835         
#> ==============================================
#>   Significance: *** = p < 0.001;   
#>                 ** = p < 0.01; * = p < 0.05  

berkfull <- glm(cbind(Admitted,Rejected)~Dept/Gender - 1,
                      data=berkeley,family="binomial")
relabel(mtable(berkfull),Dept="Department",gsub=TRUE)
#> 
#> Calls:
#> berkfull: glm(formula = cbind(Admitted, Rejected) ~ Dept/Gender - 1, family = "binomial", 
#>     data = berkeley)
#> 
#> ====================================================
#>   Department: A                           0.492***  
#>                                          (0.072)    
#>   Department: B                           0.534***  
#>                                          (0.088)    
#>   Department: C                          -0.536***  
#>                                          (0.115)    
#>   Department: D                          -0.704***  
#>                                          (0.104)    
#>   Department: E                          -0.957***  
#>                                          (0.162)    
#>   Department: F                          -2.770***  
#>                                          (0.220)    
#>   Department: A x Gender: Female/Male     1.052***  
#>                                          (0.263)    
#>   Department: B x Gender: Female/Male     0.220     
#>                                          (0.438)    
#>   Department: C x Gender: Female/Male    -0.125     
#>                                          (0.144)    
#>   Department: D x Gender: Female/Male     0.082     
#>                                          (0.150)    
#>   Department: E x Gender: Female/Male    -0.200     
#>                                          (0.200)    
#>   Department: F x Gender: Female/Male     0.189     
#>                                          (0.305)    
#> ----------------------------------------------------
#>   Log-likelihood                        -34.470     
#>   N                                    4526         
#> ====================================================
#>   Significance: *** = p < 0.001; ** = p < 0.01;   
#>                 * = p < 0.05  

#### Array-like semantics

mtable123 <- mtable("Model 1"=lm0,"Model 2"=lm1,"Model 3"=lm2,
    summary.stats=c("sigma","R-squared","F","p","N"))

dim(mtable123)
#> [1] 5 1 3
dimnames(mtable123)
#> [[1]]
#> [1] "(Intercept)" "pop15"       "pop75"       "dpi"         "ddpi"       
#> 
#> [[2]]
#> [1] "sr"
#> 
#> [[3]]
#> [1] "Model 1" "Model 2" "Model 3"
#> 
mtable123[c("dpi","ddpi"),
          c("Model 2","Model 3")]
#> 
#> Calls:
#> Model 2: lm(formula = sr ~ dpi + ddpi, data = LifeCycleSavings)
#> Model 3: lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
#> 
#> ===============================
#>              Model 2  Model 3  
#> -------------------------------
#>   dpi         0.001   -0.000   
#>              (0.001)  (0.001)  
#>   ddpi        0.529*   0.410*  
#>              (0.210)  (0.196)  
#> -------------------------------
#>   R-squared   0.162    0.338   
#>   sigma       4.189    3.803   
#>   F           4.528    5.756   
#>   p           0.016    0.001   
#>   N          50       50       
#> ===============================
#>   Significance:   
#>                 *** = p < 0.001;   
#>                 ** = p < 0.01;   
#>                 * = p < 0.05  

#### Concatention
mt01 <- mtable(lm0,lm1,summary.stats=c("R-squared","N"))
mt12 <- mtable(lm1,lm2,summary.stats=c("R-squared","F","N"))
c(mt01,mt12) # not that this makes sense, but ...
#> 
#> Calls:
#> lm0: lm(formula = sr ~ pop15 + pop75, data = LifeCycleSavings)
#> lm1: lm(formula = sr ~ dpi + ddpi, data = LifeCycleSavings)
#> lm1: lm(formula = sr ~ dpi + ddpi, data = LifeCycleSavings)
#> lm2: lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
#> 
#> ===========================================================
#>                   lm0        lm1        lm1        lm2     
#> -----------------------------------------------------------
#>   (Intercept)  30.628***   6.360***   6.360***  28.566***  
#>                (7.409)    (1.252)    (1.252)    (7.355)    
#>   pop15        -0.471**                         -0.461**   
#>                (0.147)                          (0.145)    
#>   pop75        -1.934                           -1.691     
#>                (1.041)                          (1.084)    
#>   dpi                      0.001      0.001     -0.000     
#>                           (0.001)    (0.001)    (0.001)    
#>   ddpi                     0.529*     0.529*     0.410*    
#>                           (0.210)    (0.210)    (0.196)    
#> -----------------------------------------------------------
#>   R-squared     0.262      0.162      0.162      0.338     
#>   N            50         50         50         50         
#>   F                                   4.528      5.756     
#> ===========================================================
#>   Significance: *** = p < 0.001; ** = p < 0.01;   
#>                 * = p < 0.05  
c("Group 1"=mt01,
  "Group 2"=mt12)
#> 
#> Calls:
#> lm0: lm(formula = sr ~ pop15 + pop75, data = LifeCycleSavings)
#> lm1: lm(formula = sr ~ dpi + ddpi, data = LifeCycleSavings)
#> lm1: lm(formula = sr ~ dpi + ddpi, data = LifeCycleSavings)
#> lm2: lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
#> 
#> =========================================================
#>                      Group 1              Group 2        
#>                -------------------  -------------------  
#>                   lm0       lm1        lm1       lm2     
#> ---------------------------------------------------------
#>   (Intercept)  30.628***  6.360***   6.360*** 28.566***  
#>                (7.409)   (1.252)    (1.252)   (7.355)    
#>   pop15        -0.471**                       -0.461**   
#>                (0.147)                        (0.145)    
#>   pop75        -1.934                         -1.691     
#>                (1.041)                        (1.084)    
#>   dpi                     0.001      0.001    -0.000     
#>                          (0.001)    (0.001)   (0.001)    
#>   ddpi                    0.529*     0.529*    0.410*    
#>                          (0.210)    (0.210)   (0.196)    
#> ---------------------------------------------------------
#>   R-squared     0.262     0.162      0.162     0.338     
#>   N            50        50         50        50         
#>   F                                  4.528     5.756     
#> =========================================================
#>   Significance: *** = p < 0.001; ** = p < 0.01;   
#>                 * = p < 0.05