One-Dimensional Table of Frequences and/or Percentages
Table.Rd
Table
is a generic function that
produces a table of counts or weighted counts
and/or the corresponding percentages of an atomic vector,
factor or "item.vector"
object.
This function is intended for use with
Aggregate
or genTable
.
The "item.vector"
method is the workhorse
of codebook
.
Usage
# S4 method for class 'atomic'
Table(x,weights=NULL,counts=TRUE,percentage=FALSE,...)
# S4 method for class 'factor'
Table(x,weights=NULL,counts=TRUE,percentage=FALSE,...)
# S4 method for class 'item.vector'
Table(x,weights=NULL,counts=TRUE,percentage=(style=="codebook"),
style=c("table","codebook","nolabels"),
include.missings=(style=="codebook"),
missing.marker=if(style=="codebook") "M" else "*",...)
Arguments
- x
an atomic vector, factor or
"item.vector"
object- counts
logical value, should the table contain counts?
- percentage
logical value, should the table contain percentages? Either the
counts
or thepercentage
arguments or both should beTRUE
.- style
character string, the style of the names or rownames of the table.
- weights
a numeric vector of weights of the same length as
x
.- include.missings
a logical value; should missing values included into the table?
- missing.marker
a character string, used to mark missing values in the table (row)names.
- ...
other, currently ignored arguments.
Value
The atomic vector and factor methods return either a vector
of counts or vector of percentages or a matrix of counts and percentages.
The same applies to the "item.vector"
vector method unless
include.missing=TRUE
and percentage=TRUE
,
in which case total percentages and percentages of valid values
are given.
Examples
with(as.data.frame(UCBAdmissions),Table(Admit,Freq))
#> Admitted Rejected
#> 1755 2771
Aggregate(Table(Admit,Freq)~.,data=UCBAdmissions)
#> Gender Dept Admitted Rejected
#> 1 Male A 512 313
#> 2 Female A 89 19
#> 3 Male B 353 207
#> 4 Female B 17 8
#> 5 Male C 120 205
#> 6 Female C 202 391
#> 7 Male D 138 279
#> 8 Female D 131 244
#> 9 Male E 53 138
#> 10 Female E 94 299
#> 11 Male F 22 351
#> 12 Female F 24 317
A <- sample(c(1:5,9),size=100,replace=TRUE)
labels(A) <- c(a=1,b=2,c=3,d=4,e=5,dk=9)
missing.values(A) <- 9
Table(A,percentage=TRUE)
#> Counts Percent
#> a 16.00000 19.51220
#> b 17.00000 20.73171
#> c 16.00000 19.51220
#> d 13.00000 15.85366
#> e 20.00000 24.39024