Skip to contents

The predict() methods allow to obtain within-sample and out-of-sample predictions from models fitted with mclogit() and mblogit().

For models with random effecs fitted using the PQL-method, it is possible to obtain responses that are conditional on the reconstructed random effects.

Usage

# S3 method for class 'mblogit'
predict(object, newdata=NULL,type=c("link","response"),se.fit=FALSE, ...)
# S3 method for class 'mclogit'
predict(object, newdata=NULL,type=c("link","response"),se.fit=FALSE, ...)
# S3 method for class 'mmblogit'
predict(object, newdata=NULL,type=c("link","response"),se.fit=FALSE,
                             conditional=TRUE, ...)
# S3 method for class 'mmclogit'
predict(object, newdata=NULL,type=c("link","response"),se.fit=FALSE,
                             conditional=TRUE, ...)

Arguments

object

an object in class "mblogit", "mmblogit", "mclogit", or "mmclogit"

newdata

an optional data frame with new data

type

a character string specifying the kind of prediction

se.fit

a logical value; whether predictions should be accompanied with standard errors

conditional

a logical value; whether predictions should be made conditional on the random effects (or whether they are set to zero, i.e. their expectation). This argument is consequential only if the "mmblogit" or "mmclogit" object was created with method="PQL".

...

other arguments, ignored.

Value

The predict methods return either a matrix (unless called with se.fit=TRUE) or a list with two matrix-valued elements "fit" and "se.fit".

Examples

library(MASS)
(house.mblogit <- mblogit(Sat ~ Infl + Type + Cont, 
                          data = housing,
                          weights=Freq))
#> 
#> Iteration 1 - deviance = 3493.764 - criterion = 0.9614469
#> Iteration 2 - deviance = 3470.111 - criterion = 0.00681597
#> Iteration 3 - deviance = 3470.084 - criterion = 7.82437e-06
#> Iteration 4 - deviance = 3470.084 - criterion = 7.469596e-11
#> converged
#> 
#> Call: mblogit(formula = Sat ~ Infl + Type + Cont, data = housing, weights = Freq)
#> 
#> Coefficients:
#>             Predictors
#> Logit eqn.    (Intercept)  InflMedium  InflHigh  TypeApartment  TypeAtrium
#>   Medium/Low  -0.4192       0.4464      0.6649   -0.4357         0.1314   
#>   High/Low    -0.1387       0.7349      1.6126   -0.7356        -0.4080   
#>             Predictors
#> Logit eqn.    TypeTerrace  ContHigh
#>   Medium/Low  -0.6666       0.3609 
#>   High/Low    -1.4123       0.4818 
#> 
#> Null Deviance:     3694 
#> Residual Deviance: 3470

head(pred.house.mblogit <- predict(house.mblogit))
#>        Medium       High
#> 1 -0.41922874 -0.1387428
#> 2 -0.41922874 -0.1387428
#> 3 -0.41922874 -0.1387428
#> 4  0.02716715  0.5961205
#> 5  0.02716715  0.5961205
#> 6  0.02716715  0.5961205
str(pred.house.mblogit <- predict(house.mblogit,se=TRUE))
#> List of 2
#>  $ fit   : num [1:72, 1:2] -0.4192 -0.4192 -0.4192 0.0272 0.0272 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : chr [1:72] "1" "2" "3" "4" ...
#>   .. ..$ : chr [1:2] "Medium" "High"
#>  $ se.fit: num [1:72, 1:2] 0.173 0.173 0.173 0.17 0.17 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : NULL
#>   .. ..$ : chr [1:2] "Medium" "High"

head(pred.house.mblogit <- predict(house.mblogit,
                                   type="response"))
#>         Low    Medium      High
#> 1 0.3955687 0.2601077 0.3443236
#> 2 0.3955687 0.2601077 0.3443236
#> 3 0.3955687 0.2601077 0.3443236
#> 4 0.2602403 0.2674072 0.4723526
#> 5 0.2602403 0.2674072 0.4723526
#> 6 0.2602403 0.2674072 0.4723526
str(pred.house.mblogit <- predict(house.mblogit,se=TRUE,
                                  type="response"))
#> List of 2
#>  $ fit   : num [1:72, 1:3] 0.396 0.396 0.396 0.26 0.26 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : chr [1:72] "1" "2" "3" "4" ...
#>   .. ..$ : chr [1:3] "Low" "Medium" "High"
#>  $ se.fit: num [1:72, 1:3] 0.0343 0.0343 0.0343 0.0273 0.0273 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : chr [1:72] "1" "2" "3" "4" ...
#>   .. ..$ : chr [1:3] "Low" "Medium" "High"
 # This takes a bit longer.
data(electors)
(mcre <- mclogit(
    cbind(Freq,interaction(time,class))~econ.left/class+welfare/class+auth/class,
    random=~1|party.time,
    data=within(electors,party.time<-interaction(party,time))))
#> 
#> Iteration 1 - deviance = 1070.463 - criterion = 0.1596265
#> Iteration 2 - deviance = 965.7808 - criterion = 0.0253941
#> Iteration 3 - deviance = 949.163 - criterion = 0.005112973
#> Iteration 4 - deviance = 947.9638 - criterion = 0.0002016051
#> Iteration 5 - deviance = 947.8468 - criterion = 2.469648e-07
#> Iteration 6 - deviance = 947.8431 - criterion = 4.94197e-13
#> converged
#> mclogit(formula = cbind(Freq, interaction(time, class)) ~ econ.left/class + 
#>     welfare/class + auth/class, data = within(electors, party.time <- interaction(party, 
#>     time)), random = ~1 | party.time)
#> 
#> Coefficients:
#>                 econ.left                    welfare  
#>                  -0.17380                    2.05525  
#>                      auth  econ.left:classnew.middle  
#>                   0.08059                   -1.66428  
#> econ.left:classold.middle    classnew.middle:welfare  
#>                  -2.96667                   -0.99252  
#>   classold.middle:welfare       classnew.middle:auth  
#>                  -1.62032                   -1.39064  
#>      classold.middle:auth  
#>                   1.45728  
#> 
#> (Co-)Variances:
#> Grouping level: party.time 
#>           (Const.)
#> (Const.)  1.604   
#> 
#> Approximate residual deviance: 947.8

str(predict(mcre))
#>  num [1:450] 1.168 4.367 0.148 -1.285 -1.378 ...
str(predict(mcre,type="response"))
#>  num [1:450] 0.03789 0.92862 0.01366 0.00326 0.00297 ...

str(predict(mcre,se.fit=TRUE))
#> List of 2
#>  $ fit   : num [1:450] 1.168 4.367 0.148 -1.285 -1.378 ...
#>  $ se.fit: Named num [1:450] 0.533 0.531 0.609 0.536 0.539 ...
#>   ..- attr(*, "names")= chr [1:450] "1" "2" "3" "4" ...
str(predict(mcre,type="response",se.fit=TRUE))
#> List of 2
#>  $ fit   : num [1:450] 0.03789 0.92862 0.01366 0.00326 0.00297 ...
#>  $ se.fit: num [1:450] 0.004138 0.007417 0.004969 0.000562 0.000509 ...