Skip to contents

This is an artificial data set on electoral choice as influenced by class and party positions.

Usage

data(electors)

Format

A data frame containing the following variables:

class

class position of voters

party

party that runs for election

Freq

freqency by which each party list is chosen by members of each class

time

time variable, runs from zero to one

econ.left

economic-policy "leftness" of each party

welfare

emphasis of welfare expansion of each party

auth

position on authoritarian issues

Examples

data(electors)

summary(mclogit(
  cbind(Freq,interaction(time,class))~econ.left+welfare+auth,
  data=electors))
#> 
#> Iteration 1 - deviance = 85051.49 - criterion = 0.9989204
#> Iteration 2 - deviance = 76759.94 - criterion = 0.108019
#> Iteration 3 - deviance = 74896.56 - criterion = 0.02487934
#> Iteration 4 - deviance = 74890.9 - criterion = 7.559543e-05
#> Iteration 5 - deviance = 74890.9 - criterion = 1.726814e-09
#> converged
#> 
#> Call:
#> mclogit(formula = cbind(Freq, interaction(time, class)) ~ econ.left + 
#>     welfare + auth, data = electors)
#> 
#>            Estimate Std. Error z value Pr(>|z|)    
#> econ.left -0.507265   0.007495 -67.679  < 2e-16 ***
#> welfare    0.564650   0.010700  52.769  < 2e-16 ***
#> auth       0.030305   0.005749   5.271 1.36e-07 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Null Deviance:     80580 
#> Residual Deviance: 74890 
#> Number of Fisher Scoring iterations:  5 
#> Number of observations:  37500 
#> 
#> 

summary(mclogit(
  cbind(Freq,interaction(time,class))~econ.left/class+welfare/class+auth/class,
  data=electors))
#> 
#> Iteration 1 - deviance = 7377.939 - criterion = 0.9875551
#> Iteration 2 - deviance = 4589.544 - criterion = 0.6075407
#> Iteration 3 - deviance = 4293.485 - criterion = 0.06895374
#> Iteration 4 - deviance = 4277.887 - criterion = 0.00364612
#> Iteration 5 - deviance = 4277.808 - criterion = 1.852771e-05
#> Iteration 6 - deviance = 4277.808 - criterion = 5.890781e-10
#> converged
#> 
#> Call:
#> mclogit(formula = cbind(Freq, interaction(time, class)) ~ econ.left/class + 
#>     welfare/class + auth/class, data = electors)
#> 
#>                           Estimate Std. Error z value Pr(>|z|)    
#> econ.left                 -0.77851    0.02312 -33.671  < 2e-16 ***
#> welfare                    3.43776    0.03170 108.431  < 2e-16 ***
#> auth                      -0.13740    0.03608  -3.808  0.00014 ***
#> econ.left:classnew.middle  0.44546    0.02588  17.212  < 2e-16 ***
#> econ.left:classold.middle -0.44082    0.10387  -4.244  2.2e-05 ***
#> classnew.middle:welfare   -3.12917    0.03696 -84.659  < 2e-16 ***
#> classold.middle:welfare   -5.27438    0.07286 -72.393  < 2e-16 ***
#> classnew.middle:auth      -0.86676    0.03947 -21.957  < 2e-16 ***
#> classold.middle:auth       1.39435    0.05615  24.831  < 2e-16 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Null Deviance:     80580 
#> Residual Deviance: 4278 
#> Number of Fisher Scoring iterations:  6 
#> Number of observations:  37500 
#> 
#> 

if (FALSE) # This takes a bit longer.
summary(mclogit(
  cbind(Freq,interaction(time,class))~econ.left/class+welfare/class+auth/class,
  random=~1|party.time,
  data=within(electors,party.time<-interaction(party,time))))

summary(mclogit(
  cbind(Freq,interaction(time,class))~econ.left/(class*time)+welfare/class+auth/class,
  random=~1|party.time,
  data=within(electors,{
        party.time <-interaction(party,time)
        econ.left.sq <- (econ.left-mean(econ.left))^2
        })))
#> 
#> Iteration 1 - deviance = 1071.031 - criterion = 0.1597241
#> Iteration 2 - deviance = 965.6196 - criterion = 0.02540274
#> Iteration 3 - deviance = 948.8356 - criterion = 0.005154655
#> Iteration 4 - deviance = 947.6262 - criterion = 0.0002054859
#> Iteration 5 - deviance = 947.5081 - criterion = 2.557556e-07
#> Iteration 6 - deviance = 947.5042 - criterion = 4.672682e-13
#> converged
#> 
#> Call:
#> mclogit(formula = cbind(Freq, interaction(time, class)) ~ econ.left/(class * 
#>     time) + welfare/class + auth/class, data = within(electors, 
#>     {
#>         party.time <- interaction(party, time)
#>         econ.left.sq <- (econ.left - mean(econ.left))^2
#>     }), random = ~1 | party.time)
#> 
#> Coefficents:
#>                                Estimate Std. Error z value Pr(>|z|)    
#> econ.left                      -0.13335    0.20837  -0.640    0.522    
#> welfare                         2.05552    0.21245   9.675   <2e-16 ***
#> auth                            0.08071    0.11717   0.689    0.491    
#> econ.left:classnew.middle      -1.69581    0.11631 -14.580   <2e-16 ***
#> econ.left:classold.middle      -3.04338    0.20351 -14.954   <2e-16 ***
#> econ.left:time                 -0.07782    0.30228  -0.257    0.797    
#> classnew.middle:welfare        -0.99267    0.06073 -16.346   <2e-16 ***
#> classold.middle:welfare        -1.62088    0.12850 -12.614   <2e-16 ***
#> classnew.middle:auth           -1.39056    0.04673 -29.754   <2e-16 ***
#> classold.middle:auth            1.45722    0.05814  25.063   <2e-16 ***
#> econ.left:classnew.middle:time  0.06049    0.14449   0.419    0.675    
#> econ.left:classold.middle:time  0.14723    0.26232   0.561    0.575    
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> (Co-)Variances:
#> Grouping level: party.time 
#>          Estimate   Std.Err.
#>          (Const.)   (Const.)
#> (Const.)  1.604      0.3098 
#> 
#> Approximate residual deviance: 947.5 
#> Number of Fisher scoring iterations:  6
#> Number of observations
#>   Groups by party.time: 150
#>   Individual observations:  37500
#> 
 # \dontrun{}