Mark Negative Values as Missing
neg2mis.Rd
In many newer survey data sets available from social
science data archives non-valid responses (such as "don't know" or
"answer refused") are given negative codes. The function
neg2miss
allows to mark them as missing values.)
Arguments
- x
an object that inherits from class "item.list", e.g. a "data.set" or an "importer" object.
- all
logical; should the marking of negative values as missing applied to all variables?
- exclude
an optional vector of variable naems to which the marking of negative values as missing should not be applied.
- select
an optional vector of variable names to which the marking of negative values as missing should be applied.
- zero
logical; should zeroes also be marked as missing?
Examples
ds <- data.set(
var1 = c(0,1,-1,2,3),
var2 = c(-1,-1,1,1,1),
var3 = c(1,2,3,4,5)
)
neg2mis(ds,all=TRUE)
#>
#> Data set with 5 observations and 3 variables
#>
#> var1 var2 var3
#> 1 0 *-1 1
#> 2 1 *-1 2
#> 3 *-1 1 3
#> 4 2 1 4
#> 5 3 1 5
neg2mis(ds,all=TRUE,zero=TRUE)
#>
#> Data set with 5 observations and 3 variables
#>
#> var1 var2 var3
#> 1 *0 *-1 1
#> 2 1 *-1 2
#> 3 *-1 1 3
#> 4 2 1 4
#> 5 3 1 5
neg2mis(ds,exclude=var1)
#>
#> Data set with 5 observations and 3 variables
#>
#> var1 var2 var3
#> 1 0 *-1 1
#> 2 1 *-1 2
#> 3 -1 1 3
#> 4 2 1 4
#> 5 3 1 5
neg2mis(ds,select=var1)
#>
#> Data set with 5 observations and 3 variables
#>
#> var1 var2 var3
#> 1 0 -1 1
#> 2 1 -1 2
#> 3 *-1 1 3
#> 4 2 1 4
#> 5 3 1 5